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We discuss the fluctuation properties of equilibrium chaotic systems with constraints such as isokinetic and
Nosé-Hoover thermostats. Although the dynamics of these systems does not typically preserve phase-space
volumes, the average phase-space contraction rate vanishes, so that the stationary states are smooth. Never-
theless, finite-time averages of the phase-space contraction rate have nontrivial fluctuations which we show
satisfy a simple version of the Gallavotti-Cohen fluctuation theorem, complementary to the usual fluctuation
theorem for nonequilibrium stationary states and appropriate to constrained equilibrium states. Moreover, we
show that these fluctuations are distributed according to a Gaussian curve for long enough times. Three
different systems are considered here: namely, �i� a fluid composed of particles interacting with Lennard-Jones
potentials, �ii� a harmonic oscillator with Nosé-Hoover thermostatting, and �iii� a simple hyperbolic two-
dimensional map.
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Recently some papers have appeared which discuss the
applicability of the Gallavotti-Cohen fluctuation theorem
�FT� �1� to near-equilibrium and equilibrium chaotic systems
subject to isokinetic and Nosé-Hoover thermostats �2–4�. In
particular, in �2�, Evans et al. consider constrained isokinetic
systems of interacting particles which are in equilibrium or
near-equilibrium states and claim the fluctutations of the
phase-space contraction rate of the systems at or near equi-
librium do not satisfy the FT.

One of the issues under discussion in these papers is
whether or not the FT applies when the external forces van-
ish, which we refer to as constrained equilibrium. These sys-
tems differ from genuine equilibrium ones because of the
action of a constraint—for instance, acting so as to keep the
kinetic energy constant. For systems consisting of particles
with instantaneous, elastic, hard-ball collisions the total en-
ergy is all kinetic and the constraint has no effect in the
absence of external forces; thus, the resulting ensemble is the
usual microcanonical one. For other systems the kinetic and
total energies are not the same. The constraint fixes only the
kinetic energy, and the total energy fluctuates. As a result, the
constrained equilibrium ensemble is not microcanonical, but
has a different structure, which we explore here.

For the sake of illustration, let us consider a fluid com-
posed of particles with pairwise, central interactions, placed
in a periodic box, and not subjected to external forces. In the
absence of other constraints, the microcanonical measure is
the invariant one. Now we modify the dynamics by introduc-
ing a �time-reversible� frictional force on the particles with
the requirement that the total kinetic energy remain constant
in time; see Eqs. �9�, �10�, and �14� below for a specific
example. Because of this constraint, the total energy is not

conserved and the Liouville theorem is violated. In such a
case the phase-space flow can have nonvanishing divergence
�pointwise�, even though it vanishes in average. In other
words, as long as there is no external driving, the system
relaxes to an equilibrium state, different from the one speci-
fied by the volume measure, but nevertheless with vanishing
average phase-space contraction rate. For Anosov systems or
those satisfying the chaotic hypothesis, this implies that the
sum of the Lyapunov exponents is identically zero. This is to
say the stationary measure is smooth with respect to both
stable and unstable manifolds �4�. Moreover, the existence of
a time-reversal symmetry implies that the equilibrium mea-
sure must be symmetric under time-reversal operation; i.e., a
trajectory and its time reverse are equally as probable. This is
indeed what one expects from an equilibrium state, whether
it verifies Liouville’s theorem or not.

The aim of this paper is to provide through some elemen-
tary considerations a characterization of the fluctuations of
the phase-space contraction rate of such constrained equilib-
rium systems, which we will subsequently support through
numerical studies of specific examples. The outcome indi-
cates that the FT does apply, in agreement with conclusions
reached by Bonetto et al. �4�.

For nonequilibrium stationary states, the FT �1� is a state-
ment about the asymmetric part of the probability distribu-
tion of the phase-space contraction rate. Let �̄���� denote
the nonzero expectation value of the phase-space contraction
rate of the nonequilibrium stationary state of a given system
and let Prob��t= p�̄� denote the probability of observing,
during a time interval of length t, a given fluctuation of the
partial average of � equal to p�̄, where the amplitude p is a
dimensionless number. The FT �1� states that when �̄�0,

lim
t→�

1

t
ln

Prob��t = p�̄�
Prob��t = − p�̄�

= p�̄ . �1�*Electronic address: thomas.gilbert@ulb.ac.be
†Electronic address: rdorfman@umd.edu
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As pointed out in �4�, the derivation of this result assumes
�̄�0 and must be reformulated if �̄=0.

For an equilibrium system, finite-time distributions of the
phase-space contraction rate are symmetric about zero. Now
let � denote the pointwise divergence of a flow with the
properties described above �or equivalently the logarithm of
the Jacobian of a time-discrete mapping with similar proper-
ties� and let Prob��=a� denote the �equilibrium� probability
of observing a given value a of �. For an equilibrium sys-
tem, the most general FT is the following:

Prob�� = a� = Prob�� = − a� , �2�

which holds since the equilibrium distribution is symmetric
under time reversal �this operation changes the sign of ��.
Equation �2� is similar to detailed balance for stochastic sys-
tems.

For a system whose phase-space volumes are preserved
by the evolution, the probabilities in Eq. �2� are nonvanish-
ing only at a=0, so that no fluctuations occur. But this is not
necessarily so for constrained equilibrium systems. If so, one
can consider the ratio of the two probabilities, equal to unity,
and average � over some time interval without affecting the
result. Let �t denote the average of � over a time interval of
length t and take the logarithm of the ratio of Eq. �2� applied
to �t to obtain the expression

lim
t→�

1

t
ln

Prob��t = a�
Prob��t = − a�

= 0, �3�

which is a corollary to Eq. �2� and, as remarked in �4�, is the
natural generalization of the Gallavotti-Cohen FT, here ap-
plied to an equilibrium system. The statement of Eq. �3� is
weaker than Eq. �2� and not very useful for its own sake
since the equilibrium stationary state carries no asymmetric
part. Nevertheless, it is correct and not in contradiction with
the FT as stated in �1�.

This observation does not support the comments by Evans
et al. �2� that for Anosov equilibrium dynamics the range of
the admissible fluctuations for the FT shrinks to zero. While
it is true that the asymptotic range of admissible fluctuations
of �t may shrink to zero as t→�, one should still expect to
measure fluctuations about the value a=0 as long as t��.
Moreover, the rate at which Prob��t=a� goes to zero is the
same as that of Prob��t=−a�, so that the ratio of the two
remains constant as t→�. Of course, the right-hand side of
Eq. �3� being zero, the result is trivial, irrespective of the
asymptotic form of the probability distribution. In other
words, unlike Eq. �1� for nonequilibrium stationary states,
neither Eq. �2� nor Eq. �3� holds any information on the
asymptotic form of the probability distribution of the phase-
space contraction rate; the only information provided by Eq.
�2� is that the probability distributions are symmetric about
their average value, zero. Moreover, Eq. �2� holds for equi-
librium systems irrespective of the details of the dynamics,
whether it verifies the chaotic hypothesis or not. The details
of the fluctuations may indeed vary from one system to an-
other, but even though, whether the fluctuations are trivial or
not, Eq. �3� always holds.

Here we will show, through the example of an equilibrium
hyperbolic map1 with nontrivial Jacobian, that the distribu-
tion of the phase-space contraction rate is symmetric about
zero, with an asymptotic form given by Prob��t=x�
��t�x�dx, with

�t�x� =
t

	2��2
exp
−

�xt�2

2�2 � , �4�

where � is a constant which depends on the specific system
under consideration. We note that this indicates that the dis-
tribution of the total phase-space contraction accumulated in
time has a variance that is asymptotically independent of
time.

We will show through two additional examples that for
both Nosé-Hoover thermostatted equilibrium systems �whose
kinetic energy distribution is given by the canonical en-
semble distribution� and constrained, equilibrium interacting
particle systems, such as a Lennard-Jones fluid with isoki-
netic thermostat, the asymptotic form of the phase-space
contraction rate distribution function is �i� nontrivial, �ii�
consistent with the relevant equilibrium fluctuation relations,
Eqs. �2� and �3�, and �iii� verifies a central limit theorem
similar to Eq. �4�, albeit with a time dependence in 	t instead
of t.

The first example we consider is a mapping of the unit
square onto itself with hyperbolic properties similar to the
baker map. It is a variant of a nonlinear baker map previ-
ously introduced by us �5�. Namely, let Ma be defined by

Ma�x,y� = �„2	a�x�,	−a�y/2�… , 0 
 x � 1/2,

„2	a�x� − 1,	−a��y + 1�/2�… , 1/2 
 x � 1,

�5�

where

	a�x� = ��1/��arctan�tan��x�2−a� , 0 
 x � 1/2,

1 + �1/��arctan�tan��x�2−a� , 1/2 
 x � 1.


�6�

The time reversibility of Ma under the time-reversal op-
erator T�x ,y�= �1−y ,1−x� is easy to check. Moreover, as
long as 0
a�1, Ma is uniformly expanding along the x
coordinate, while it is contracting along the y coordinate. It is
smooth; i.e., it is continuous and has a continuous derivative
everywhere, but for the cut at x=1/2. Therefore it shares the
hyperbolic properties of the usual baker map. The Jacobian,
which we denote �DMa�x ,y��, is typically not equal to unity,
but the natural invariant measure of this map turns out to be
absolutely continuous, as far as one can tell from numerical
simulations. This is illustrated in Fig. 1 where the parameter
was set to a=1/2. The symmetry of the invariant measure
under the time-reversal operator is clearly seen from the fig-
ure.

1Unlike Anosov systems, which are assumed to be continuously
hyperbolic, we will allow for discontinuities in the hyperbolicity,
much like with the finite horizon periodic Lorentz gas or with the
baker map.
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The smoothness of the invariant measure is consistent
with the computation of the Lyapunov exponents, which, for
this value of the parameter, are numerically found to be �+
=0.6472+o�10−4�, �−=−0.6472+o�10−4�—i.e., within nu-
merical errors �++�−=0. Figure 2 shows a numerical com-
putation of the probability distribution function of the loga-
rithm of the Jacobian of Ma, which is symmetric about 0, as
expected from Eq. �2�. The probability distributions of the
time-averaged Jacobian are shown in Figs. 3 and 4.

The second example we consider is that of a harmonic
oscillator with a so-called Nosé-Hoover chain of thermostats,
here limited to two thermostat variables. This generalization
of the Nosé-Hoover thermostatting scheme is due to �6�. The
system is time reversible and yields canonical distributions
of the phase space variables, as shown in �7�.

Let q denote the position variable, p the momentum, and
� and  the thermostatting variables. Taking all the oscillator
parameters to be unity, the equations of motion are �see p.
193 of �7��

q̇ = p ,

ṗ = − q − �p ,

�̇ = p2 − 1 − � ,

̇ = �2 − 1. �7�

In the absence of a thermostatting mechanism, oscillations
would be periodic of period 2�, but this is no longer so if the
thermostatting mechanism is turned on.

The phase-space contraction rate is �=−�− whose dis-
tribution, computed numerically with an adaptative-step-size
fifth-order Runge-Kutta scheme �8�, is shown in Fig. 5. This

FIG. 1. �Color online� Numerical computation of the invariant
density of Ma�x ,y�, Eq. �5�, for a=1/2. The computation is the
result of 104 trajectories iterated over a time of 103 steps. The same
time was discarded prior to outputting trajectories in order to elimi-
nate transient effects.

FIG. 2. Numerical computation of the probability density of the
logarithm of the Jacobian of Ma�x ,y�, Eq. �5�, for a=1/2. The
computation is the result of sampling 104 trajectories iterated over a
time of 104 steps. 103 bins were used.

FIG. 3. Numerical computation of the probability density of the
logarithm of the time-averaged Jacobian of Ma�x ,y�, Eq. �5�, for
a=1/2. The curves shown here are averaged, respectively, over N
=5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, and 500 steps �the
curves get narrower as the number of steps increases�. The compu-
tation is the result of sampling 104 trajectories iterated over a time
of 104 steps. 103 bins were used.

FIG. 4. Same as Fig. 3 with the curves rescaled according to Eq.
�4�. The thick dashed curved is a Gaussian with standard deviation
�2=0.35.
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curve is Gaussian with standard deviation 	2, consistent with
the analytical result given in �7�, p. 193. Distributions of the
time-averaged contraction rates �t are shown in Figs. 6 and
7. Deviations from an exact Gaussian can be seen for inter-
mediate times, which are due to surviving correlations. How-
ever, these deviations disappear for long enough times, so
that one retrieves a Gaussian distribution whose asymptotic
form is now given by Prob��t=x���t�x�dx, with

�t�x� =	 t

2��2 exp
−
�x�2t

2�2 � . �8�

Notice the time dependence is different from Eq. �4�.
The third example we consider is that of a Lennard-Jones

fluid with the kinetic energy constrained to a constant value,

q̇i = pi, �9�

ṗi = �
j�i

F�qij� − �pi, �10�

where F�qij� denotes the force between particles i and j as-
sociated with the usual Lennard-Jones potential and qij is the
distance separating the particles,

F�r� = − ���r� , �11�

��r� = 4�
� r

�
�12

− � r

�
�6� , �12�

qij = �qi − q j� . �13�

FIG. 5. Numerical computation of the probability density of
−�−, the divergence of the Nosé-Hoover oscillator, Eq. �7�, for the
trajectory with initial conditions are q0=0, p0=1, �0=0.5, and 0

=0. The integration is performed over a time 2��108, sampled
every 2�, with 500 bins spanning �−10,10�. The thick line on top is
a Gaussian with standard deviation 	2.

FIG. 6. Numerical computation of the probability density of the
time-averaged contraction rate �t, for times T=1, 5, 10, 15, 20, 25,
50, 75, 100, 150, 200, 250, 500, and 750 �times 2��. The param-
eters of the integration are the same as Fig. 5.

FIG. 7. Same as Fig. 6 with the curves rescaled according to Eq.
�8�. The thick curve is a Gaussian with standard deviation �2=3.2.
The agreement is excellent for times 200 and greater.

FIG. 8. Numerical computation of the probability distribution of
�, the damping term in Eq. �10�. The parameters of the simulation
correspond to the usual choice of dimensionless parameters. Eight
particles were used on a periodic two-dimensional box of size ap-
proximately 7�8. The temperature was set to T=1 and the particle
masses to m=1. A number of 104 trajectories were taken and the
value of � recorded for 1000 units of time at intervals of 1 time
units. 300 bins were used, spanning values �� �−3,3�. The average
value of � was computed to be �2.7�10−4 with standard deviation
�1.8�10−3. About 8.7% of the computed values fell out of the
range shown in the figure.
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The damping term � in Eq. �10� is a function of the
phase-space coordinates, derived from the condition that the
kinetic energy be constant and such that Eqs. �9� and �10� are
time-reversal symmetric,

� =

�
i,j�i

pi · F�qij�

�
i

pi
2

. �14�

One readily sees that � is precisely minus the divergence of
the flow �up to a multiplicative constant� and therefore the
quantity whose probability distribution is expected to be
symmetric about zero according to Eq. �2�. This has been
checked numerically for a two-dimensional fluid of eight
particles in a box of approximately 7�8 units of length

squared, using the modified Verlet leapfrog algorithm, as de-
scribed in �9�.

The resulting probability distribution of � is shown in
Fig. 8 and the probability distributions of its time average in
Figs. 9 and 10.

In summary, we have shown for three examples of con-
strained equilibrium chaotic systems that the probability dis-
tributions of the phase-space contraction are symmetric
about zero and verify a central limit theorem. The time de-
pendence varies according to the nature of the dynamics. It
would be interesting to further investigate this property.
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FIG. 9. Same as Fig. 8 for the time average �t=1/T�0
T�, for

times T=1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250,
500, and 750.

FIG. 10. Same as Fig. 9 with the curves rescaled according to
Eq. �8�. The thick curve is a Gaussian with standard deviation �2

=5.9. The agreement is excellent for times 200 and greater.
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